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Axial flows over cylinders are frequently encountered in practice, e.g. in tubular heat exchangers and
reactors. Using the Integral method, closed-form relationships are developed for heat transfer co-
efficients or Nusselt number inside a fluid flowing axially between a rectangular/square array of parallel
cylinders with unequal temperatures. The model considers the temperature variations of cylinders from
one row to another while assuming the same temperature for all the cylinders in each row. The model
could well capture several sets of numerical data, which can be regarded as excellent in light of the
simplicity and comprehensiveness of the model. The compact and accurate formulae developed in this
work can be readily employed, and also implemented into any software or tools, for the estimation of Nu
in tubular heat exchangers, fins systems, porous media and composite manufacturing.

© 2015 Elsevier Masson SAS. All rights reserved.
1. Introduction

Heat transfer through parallel cylinders or tube assemblies is a
problem of considerable interest in a variety of industrial thermal
applications such as multi-tubular heat exchangers, fins, porous
media and rod-bank generators, to name a few [1e3]. A general,
easy-to-use and still accurate model that can predict the heat
transfer coefficient under different operating conditions is essential
for the modeling and design of such systems.

Considerable attempts have been made to study the heat
transfer of a longitudinal flow between parallel cylinders. However,
almost all of these studies are confined to either numerical solu-
tions or asymptotic models developed for two limited cases: square
or triangular array of cylinders having the same temperatures.
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served.
Table 1 summarizes all the studies performed on laminar-flow heat
transfer to a fluid flowing axially between parallel cylinders.

To the authors' knowledge, and as shown in Table 1, the litera-
ture lacks a model for estimating the heat transfer coefficient of a
laminar flow inside a rectangular array of cylinders. Especially, no
model or data is available for axial flow of a fluid between parallel
cylinders with unequal row temperatures, which is indeed a more
realistic case in comparison to the case of equal temperatures of the
cylinders. The aim of this study is to develop a general compact
analytic model for predicting the heat transfer coefficient of a
longitudinal fluid flow passing through a rectangular array of par-
allel cylinders with unequal row temperatures.

It should be noted that the determination of the exact temper-
ature profile is not the final aim of this study. Herewe are interested
in finding a closed-form analytic relation for the prediction of the
heat transfer coefficient. As a result, the integral method can be
useful, as it usually leads to compact, simple and sufficiently ac-
curate relations, especially for estimating wall fluxes and average
profiles [7e14]. In turn, we use the integral method as a powerful
technique for obtaining approximate still reasonable solutions to
rather complex problems with remarkable ease. The basic idea is
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Table 1
Review on the works tailored for modeling the heat transfer by laminar axial flow between parallel cylinders: There is no model for the case of unequal cylinders temperatures
and/or for rectangular arrays of cylinders.

Author(s) & year Limitations & remarks

Array of cylinders Temperatures of cylinders Porosity Type of study

Szaniawski & Lipnicki (2008) [1] Square Equal Very high (>95%) Analytic (complex series form)
Miyatake & Iwashita (1990) [2] Square Triangle Equal e Numerical
Antonopoolos (1985) [4] Rectangle Equal wall heat flux e Numerical
Yang (1979) [5] Square Equal e Numerical
Sparrow et al. (1961) [6] Triangle Equal e Analytic, series form
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that, from the physics of the system, we assume a general shape of
the temperature profile. It must be noted that we are not interested
in the precise shape of the temperature profile but rather need to
know the heat flux and the average profile of the temperature over
the considered domain to calculate the heat transfer coefficient. As
mentioned earlier, estimating the average profile and the flux
values can be well performed by the integral method. The integral
method has been successfully applied to several classical problems
such as moving plate and boundary layer [7e14]. However, the use
of this method to develop a heat transfer model for the fluid flow
between parallel cylinders is a novel approach. In the following
sections, the model will be presented in a general form to be also
suitable, with only minor changes, to other possible applications
such as catalytic reactors and the beds packed with cylindrical
materials.
2. Model development

Fig. 1 shows a fluid flowing through parallel cylinders of diam-
eter d and length L extended along the x-direction and spaced in a
rectangular array. The spacing between the cylinders centers is H in
the vertical (z) direction and is W in the horizontal (y) direction. In
this model, contrary to available similar studies as listed in Table 1,
W is not necessarily equal to H and these parameters can take
different values (H � W). In other words, the general case of lon-
gitudinal flow through a rectangular array of parallel cylinders is
Fig. 1. Fully developed laminar flow between a rectangular array of parallel cylinders;
the coordinate system (x,y,z), the fluid temperature and velocity (T∞ and u∞), the
temperatures of each row of cylinders (Twi: Temperature of all the cylinders in the ith
row) and the geometrical parameters W, L, H, and d are shown on figure (H � W).
considered. The model also assumes fully developed steady state,
laminar (creeping) [4,6,14e17] incompressible flow. The physical
properties are assumed to be constant, and dissipation, gravity and
buoyancy effects are negligible. The cylinders temperatures can
change from one row to another (Twi � Twi þ 1 where i denotes the
row number) but are assumed to be the same in each row. The
temperature and velocity of the fluid at the inlet is T∞ and u∞,
respectively (Tw1 > T∞).

Fig. 2 shows the lateral and front views of a longitudinal flow
between parallel cylinders and the spacing (d) between the upper
and lower boundaries of the control volume considered:
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The analytic expression of the velocity profile obtained by
Sparrow and Loeffler [18] shows that the velocity is almost uniform
except for the area at the vicinity of the cylinders surfaces. This
point is also confirmed by the Fluent simulation results shown later
in the “Model verification” section. For this reason, the average
velocity (u), which can be readily obtained from the mass flow rate
[2,3], is used in the model derivation throughout this study.

The energy equation and the corresponding boundary condi-
tions are (T(x ¼ 0,z) ¼ T∞):

u
vT
vx

¼ a

 
v2T
vz2

!
(2)

T
�
x; z ¼ þd

� ¼ Tw1 (3)

T
�
x; z ¼ �d

� ¼ Tw2 (4)
Fig. 2. Front and lateral views of four parallel cylinders with the axial flow; the present
model considers the general case of rectangular (H � W) arrays of cylinders which can
have unequal row temperatures (Twi � Twi þ 1).
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where the average value of d (i.e., d) is used to eliminate the minor,

undesired dependency of d on y for the corners
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It should be noted that for the space in the range of
0 < y < W � d/2, the temperature of the fluid on the upper and
lower borders (edges) is generally not equal to the temperature of
the adjacent cylinders (wall temperatures). As a result, Eqs. (3) and
(4) are not accurate for this range of y and the value of the border
temperature (subtracted from the wall temperature) must be
added to the right-hand sides of Eqs. (3) and (4), even though the
border temperature is negligible for packedmaterials. Here, at first,
no border temperature assumption is made to be able to proceed
with the modeling. Later, the border temperatures are considered
to make the model as accurate as possible, especially for highly
porous materials.

In order to solve Eq. (6) with its boundary conditions (Eq. (3) and
(4)) using the integral method, the model assumes a parabolic
profile for the temperature according to the physics of the problem:

Tðx; zÞ ¼ a0ðxÞ þ a1ðxÞzþ a2ðxÞz2 (6)

Solving the model's equations by using the integral method, the
final form of the temperature profile is obtained as:
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It should be noted that the fluid temperature is mainly a func-
tion of two variables x and z for the rectangular array of cylinders
with unequal row temperatures. The variation in the fluid tem-
perature is approximated in the y-direction by dividing the space
between the four cylinders (the control volume) into two main and
corner blocks as shown in Fig. 3. In turn, considering these two
blocks allows accounting for the average temperature variations in
the y-direction. However, the temperature gradient at the cylinder
wall is later estimated based on a similar quadratic temperature
profile obtained for the z-direction.

Similarly to the border velocity profile defined in Refs. [14,15],
we consider a border temperature profile based on the average
temperature in the case of no border temperature (wall tempera-
tures as boundary conditions) as follows (0 � y<W�d

2 (half of the
main block)):
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where TðxÞð ¼
Z z¼þd

z¼�d

Tðx; zÞdzÞ=2dÞ is the average temperature in-

side the main block, given by:
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And g(ε) shows the dependency on porosity (ε) [14,15], which is
obtained from a linear interpolation between two extreme cases of
minimum (Tbor ¼ Tw) and maximum (Tbor ¼ T∞) possible porosities:

gðεÞ ¼ 1:274ε� 0:274 (10)

ε ¼ 1� pd2
	
4

WH
(11)

In order to eliminate the weak, not important dependency of
Tbor(x,y) on the undesired variable y, we can take an average from
that over y to obtain TborðxÞ:
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Finally, one can reach the temperature profile and its average as:
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The average temperature of the entire block can be approxi-
mated using:

TBðxÞ ¼

Z z¼þd

z¼�d
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The final form of the average temperature will then be:
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The local heat transfer coefficient can be obtained using:

h ¼
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Fig. 3. 3D view of four parallel cylinder quarters considered for the modeling and the space between them considered as the control volume through which the fluid flows.
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where the term vT/vz can be obtained from Eq. (7) and the terms vz/
vr and vy/vr are:

vz
vr

¼ zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ y2

p (19)

vy
vr

¼ yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ y2

p (20)

The variation of T along the y-directionwas approximated in the
present model by defining two main and corner blocks. In order to
accurately estimate the T-y slope at the cylinder surface with Tw1,
according to the physics of the problem and the analytic temper-
ature profile obtained for the z-direction, a quadratic temperature
profile similar to Eq. (7) is considered for the y-direction:
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where YC ¼ W
2 � pd

8 since
�
H
2 � d

2

�
� z � H

2. It should be noted that

the second term of the polynomial temperature has disappeared as
the temperatures of the cylinders are the same in each row.

The derivation of temperature with respect to y at the cylinder
surface will then be:

vT
vy

¼ ðTw1 � T∞Þexp
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All the above derivations in Eq. (18) are evaluated at z ¼ dC and
y ¼ YC.

Knowing
�
vTðx;zÞ

vr

�
z¼dC

from the above calculations and TBtðxÞ
from Eq. (16), the local heat transfer coefficient is reached as a
closed-form relationship:
where constants A, B, C, D and F are given as below:

A ¼
�
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(24)
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B ¼
�
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(25)

C ¼ Tw1 þ Tw2 (26)

D ¼ 2dMðW � dÞ þ 2dCd (27)

F ¼ W � dð Þ= Wεð Þ (28)

The Nusselt numbers can be obtained using:

Nu ¼ hd
k

(29)

- Special case of equal cylinders temperatures: Twi ¼ Twiþ1 ¼ Tw

Assuming the same temperature for all the cylinders, the local
heat transfer coefficient reduces to:
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3. Model verification

Using Fluent Ansys, the axial flow of air with the velocities of 0.5
and 1 m/s is simulated for several rectangular array of cylinders
with different row temperatures as shown in Fig. 4. The model
predictions are compared to the results (at x ¼ d, 7d and 14d) of
these simulations in Fig. 5a and b for the model verification for the
two velocities. All the fluid properties used for the model
Fig. 4. Temperature (K) and velocity (m/s) contours for the air flowing axially between fo
Tw2 ¼ 342 K, u ¼ 1 m/s and T∞ ¼ 298 K. Due to the symmetry in the y-direction, half of th
verification are listed in Table 2. Fig. 5 shows that the model can
well capture the numerical results of the Nu in the fully-developed
region (see Fig. 4) with the maximum and average relative errors of
34 and 16%, respectively. It should be noted that the model error at
x ¼ d (the first numerical data shown in Fig. 5a) is 60%, which is
much higher than the errors of 27 and 17% obtained for the other
two points of x¼ L/2 and x¼ L (u¼1.0m/s,H¼ 5d), respectively. The
reason for this can be attributed to the fact that the point x ¼ d is
within the entrance (non-fully developed) region of the flow. For
the fully developed region, the agreement between the closed-form
compact formulae of the present study and the numerical data can
be regarded as excellent, especially in light of the simplicity and
comprehensiveness of the present model. Similar discussions can
be made for the other cases considered in Fig. 5.

The numerical data of Ref. [2] provided for the special case of
square (W ¼ H) array of cylinders with the same temperatures
(Twi¼ Twiþ1¼ Tw) can also be used for the verification of the present
model. Fig. 6 shows that the model results are in reasonable
agreement with the numerical data of Ref. [2] for pitch-to-diameter
(PD ¼ W/d ¼ H/d) ratios of 2 and 4. For PD ¼ 1.5, the model could
provide rough, still reasonable, estimations of the Nu. The reason
for such rough Nu estimation (at very low PD ratios) by the model
can be attributed to the fact that for the packed arrangements
(PD < 1.5), the velocity profile cannot be approximated to the
average velocity. For such cases, the flowmay be approximated to a
(internal) flow inside a duct or channel.

It should be noted that the analytic model of Ref. [1] developed
for the specific case of the square (W ¼ H) array of thin cylinders
(very high porosities) with equal temperatures (Twi ¼ Twiþ1 ¼ Tw)
cannot be used for comparison with the present model. The Nu
results reported in Ref. [1] shows some inconsistency with the
realistic trends of Nu with porosity. For instance, with increasing
ur cylinders (cylindrical quarters): L ¼ 14d, W ¼ 2d, H ¼ 5d, d ¼ 8 mm, Tw1 ¼ 350 K,
e space (0 � y � W/2) has been shown.



Fig. 5. Comparison of the present model (solid curves) with Fluent Ansys simulations
(data points) for the two velocities of: (a) u ¼ 1.0 m/s and (b) u ¼ 0.5 m/s. The other
parameters are d ¼ 8 mm, L ¼ 14d, W ¼ 2d, H ¼ 3d, 5d and 10d, Tw1 ¼ 350 K,
Tw2 ¼ 342 K, and T∞ ¼ 298 K.

Fig. 6. Comparison of the present model with the numerical results of Ref. [2] for a
special case: d ¼ 1 mm, L ¼ 100d, W ¼ H ¼ 1.5d, 2d and 4d (square array of cylinders
with the same temperature of Tw ¼ 350 K), u ¼ 1 m/s and T∞ ¼ 298 K.
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porosity, the model of Ref. [1] predicts a continuous increase in Nu,
which is not consistent with the numerical data of Ref. [2].
4. Summary and conclusion

A compact analytic model was developed for predicting the heat
transfer coefficient or Nusselt number for longitudinal laminar flow
Table 2
Air thermo-physical properties used for the model validation.

Property Value Unit

k 0.024 W/m K
m 1.7 � 10�5 Kg/m s
r 1.2 Kg/m3

a 1.99 � 10�5 m2/s
passing through parallel cylinders. The model accounts for the
salient geometric parameters, the fluid thermo-physical properties
and the operating conditions. Contrary to all the studies conducted
on the longitudinal flow between parallel cylinders, the present
model considers the general case of rectangular arrays of parallel
cylinders whose temperatures can vary from row to row. For such
general complex case, the model can accurately predict the Nu for
any porosity of the tube bank and for any spacings between the
cylinders, except for the narrow range of 1 � W/d, H/d < 1.5 where
the model gives approximate estimates of the Nu. The closed-form
simple formulae presented in this study can be readily used for a
variety of heat exchangers and rod-generators where longitudinal
flows through parallel tubes/pipes are encountered.
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Nomenclature

A, B, C, D, F: constants defined by Eqs. (24)e(28), respectively
a0, a1, and a2: coefficients in the integral method
cp: heat capacity of fluid J/Kg K
d: cylinder diameter m
Gz: Graetz number ¼ rucpd

2

4
4ðPDÞ2�p

k x -
h: (local) heat transfer coefficient W/m2 K
H: spacing between cylinders centers in z-direction m
k: fluid thermal conductivity W/m K
L: cylinder length m
Nu: (local) Nusselt number (¼hd

k ) -
PD: pitch-to-diameter ratio (¼W/d ¼ H/d) for square array of cylinders -
r: radial variable (¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ y2

p
) m

T: fluid temperature K
T: average fluid temperature K
Tbor: border temperature (defined for the main block) K
Tw: cylinder (wall) temperature K
Tw1: A constant temperature K
Tw2: A constant temperature K
Twi: temperature of all cylinders in ith row K
Twiþ1: temperature of all cylinders in (iþ1)th row K
u: fluid velocity m/s
u: average fluid velocity m/s
u∞: velocity of free stream of fluid m/s
W: spacing between cylinders centers in the y-direction m
x: coordinate system variable along the flow direction
y: coordinate system variable
z: coordinate system variable

Greek

m: fluid viscosity Kg/m s
a: fluid thermal diffusivity m2/s
d: half of the spacing between the upper and lower boundaries of the control volume

m
d: half of the average spacing between the upper and lower boundaries of the control

volume m
dC : d in the corner block (¼H

2, see Eq. (5)) m
dM: d in the main block (¼H

2 � pd
8 , see Eq. (5)) m

ε: porosity
r: fluid density Kg/m3

Y: half of the spacing between the left and right boundaries of the control volume m
YC: half of the average spacing between the left and right boundaries of the control

volume in the corner block
�

¼ W
2 � pd

8

�
) m

Subscript

∞: free stream
i: ith row of cylinders (i ¼ 1,2,3, …)
B: entire block
bor: border temperature
C: corner part of the block
M: main or middle part of the block
w: wall
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